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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL TRANSLATION F-6

THE THEORY OF MOMENTLESS SHELI_ OF REVOLUTION*

By V. Z. Vlasov

§1. Basic equations of the theory of momentless shells of revolution. By a

momentless shell, we mean a thin-walled three-dimensional structural shape, whoge

natural, unloaded state is described by any given surface, and which does not

show resistance to bending deformation at any point. Only tangential (normal and

shearing) stresses acting parallel to the middle surface can arise out of the inter-

nal forces in a momentless shell. The intensity of these stresses is distributed

uniformly across the thickness of the shell.

Let the shell be defined by a surface of revolution whose equation is r = r(z),

where z is the coordinate along the axi_ c_f revolution, and r is the radius of a

parallel (Fig. 1).

In this case, the equations of equilibrium and extensional deformation of

the middte surface of the shell of revolution have the form

- I dS

O(rNl) r',V, !-_ _t_ Arp_
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(1.1)

I Or r' I o,, t r a(_),j8 _ _ _ _'_

(1.2)

Here N1, N2, and S are components of the tensor describing the stress state in

the momentless shell (Fig. 2). A_ ]/']-_?(r')_; A is a coefficient in the first quadratic

form of the surface, pg, p_, andpg are components of the surface load vector.

*Translated from: Izv. AN SSSR, OTN_ no. ), 1955_ pp. 55-84.



el, el, andw arc the components of membrane strain in the shell; u, v, and w are

components of the total displacement vector of a point n the middle surface of

the shell (Fig. 3).

For any assigned surface loading, the internal stresses in the shell of revolu-

tion are determined by the static equations (1.1). The positive sense of these

stresses is indicated on Fig. 2.

For any assigned membrane strains, the displacements of ;_ point in the middle

surface of tile shell are determined by the geometric eq lations (1.2). The positive

sense of these displacements is shown on Fig. 3.

§ 2. Homog_eneous eqnations for momentless shells. Let us examine the problem

of tile equilibrium and bending of a momentless shell under the assumption that

the right members of equations (1.1) and (1.2) are equal to zero. Setting

Pg = P0 = P{; = 0, we have the homogeneous, static stress equations describing the

equilibrium of a lnomentlcss shell in the absence of a surface load:

Fig. 2.

OS
O (rNl)--r'Nt + A _ =0

A ONt
_ O(rS) +r'S=O

r r ,t

iii Nx + Nt=O

(2.1

Analogousl¢, considering the tangent

strains in the shell, £1, ez, and w to be

equal to zero, "v,e have a system of three

linear homogeneous equations for the displacements u, v, and w, of points in the

middle surface of the shell.

al

0U r '_

0z Si-_ w = 0

t 0v r' t

;0_ "F _u + _-iTw = 0

1o, , O(v)7 ol + _: =0

(2.2)

Bendin_ de ormations of an incxten-

sible surface ar, , in fact, described by

these equations. In terms of the flexural

strains t<1, g z, and r, an infinitesimally small bending d, formation of the surface

of revolution can be described also by the equations



(r_2) -- r'.t + A _ = 0

O (r_) -4- r'_ = 0 (2.3)

rf _

A _.x z + x I = 0

obtained on the basis of the static-geometric analogy from the equations of

equilibrium (2.1) by replacing N z by Kl, N i by Kz, and S by "r.

Equations (2.3) are identical with equations (2.1).

Each of the individual systems of differential equations (2.1), (2.2), and

(2.3), which pertain to three different problems for arbitrary shells of revolution,

can be reduced to a system of,two differential equations in two unknown functions.

Introducing stress functions, displacement functions and strain functions into the

investigation, and making use of the methods of the static-geometric analogy as

set forth in the monograph [1]*, we can reduce each of the three systems of

equations in such a manner that this system will have one and the same form for

all three of the problems. We represent this system in the following form:

OVi t OUi OVt 1 OUi

O-'_ "_i" _-=0, .-_0 +rr,-.-= ._-z =0 (i=1,2,3) (2.4)

Here U i = U i (z, 13 ) and V i = V i (z, 3 ) are the new unknown functions. The index i

assumes the values 1, 2, or 3, according to the number of the problenl, described

by equations (2.1), (2.2), or (2.3). Let us assunle that equations (2.4) together

with the functions determined by it with i : 1 are equivalent to equations (2.1);

with i = 2, to equations (2.2); and with [ = 3, to equations (2.3).

In accordance with this chosen system of enumeration, we have these formulas

for the unknown functions of the original equations (2.1), (2.2), and (2.3):

A r _ t

N:=-i-VI, Nt=TgVI, S- T£UJ (2.5)

__ A OU._ r' U3U= Ua, v=rV a, W=r. Oz A (2.6)

A r" l If2
xz : 7- Vz, xt = _-V2, "r -- ( _. 7 )

Here, as before,

dr d_r
A=V_-Vr '2, r=r(z), r'=-_z, r"--dz ,

with formtllas (2.g), equations (2.4) are equivalent to equations (2.1); with for-

nlulas (2.6), to equations (2.2); and with formulas (2.7), to equations (2.3).

* The [lj appears to be a typographical error for [8]- rrmasaa_rs note.



Equations (2.4) are likewise reduced to a single d fferential equation of

second order by introducing, for each of the three prot lems, one of the auxiliary

functions F i (z, 1_ ) according to the formulas

u,=- r: _ (Fq , OFC;-, ' V, = 7-a-_ (2.8 )

This equation, associated with formulas (2.8), has the form

O'Fi r; (F, O'F,,e: - +_)=0 (z9)

Here F i = Fi(z , _ ) is thc fundamental function sou ;ht for. Depending on the

character of thc problem, it is either a stress function for the momentless shell,

or a strain function for the inextensible surface, or, finally, a displacement

function.

Formulas (2.5), (2.6), and (2.7), determining the stresses, displacements,

and bending deformations take on the following form:

NI _ A OF1 r" OF l -- rOF1
r O_ ' i2= .4 d_ ' S= O. (2.10)

r' al", .0_, A O l _ 0_,_=) r'r' OF=u-- A 0z ' v=r , w=--r--w, _[r- i z, + -_ _ (2.11)

A OFa r" 01"_ Ob's

r a[3 A 0_ (2.12)

[tcrc F 1 is a stress function, F z is a displacement fJnction, and F s is a strain

function. With this modification, each of the problems, pertaining to the equili-

brium and bending of a momentless inextensible shell, is described by a single

differential equation (2.9) and its associated appropria e static or geometric

boundary conditions.

§ 3. Elliptic and spherical shells. In our previous fapers [1, 2], it was shown

that if a shcll is formed along a quadric surface havin_ positive Gaussian curva-

ture, i.e., along a surfaec which is convex everywhere :ellipsoid, sphere in a

special case, paraboloid, hyperboloid of two sheets), then the equations of

equilibrium of the momcntless shcll, and consequently _ttso the equations of bending

o! the inextensible surface, can by means of the appropriate transformation

be reduced _o the Cauchy-Riemann equations of l[le theory of functions of a

complex variable, or, equivalently, to the single harm(nit equation

a=-_ nt- _ =0 (3.1)



Fi_. 4.

Here B is the angular coordinate,

and a is determined by the formula

(Fig. 4)

_= lnV_ +-z--,

The index i can, as before, take on

all three of the numerical vaIues 1, 2,

and 3, corresponding to the three problems here examined simultaneously. Sub-

stituting for elliptical shells into the formulas (2.fi), (2.6), and (2.7)

a
a r t : -- _- sh _.r = C-_&_ ,

r" d_r _ a oh: _x h = V'_ = t
- 51z2 b: %- V bZ 4- a _ shZ a

and identifying the functions Ui--- tl= 0¢Pi d_i
b 0[3 ' ri--"_a (t=:1,'2,3), wc obtain

t
(l.' sh2 _ 0_1

Nt:_ _b-'ha_ b"i- ' 1 O_

N., a ,'h 3 a O_
- b Yb i _ a"-sh":c O_ '

II'

a _- 0%_, a 0%,
ft -- 1)-

V/,"- _ a:M_ 013 ' erie ,l_

a IQ,_+ a_ sii _ a 0'-'9 a 3 sh a ocp.,
t, ch_ 0_0[_ -{- l, i'b: _S'._t;2_ of3

1 _-- ..... d?,
:'(2 rib [13_ * 1 0_3

a el? ot 09:, b 0[5

×l = --- b |" b_ 'r ,tz _l_: _ Oa'

(3.2)

(3.3)

(3.4)

By means of formulas (3.2), the internal tangential specifications of the stress

state in the momcntless, elliptical shell, N1, Nz, and S, are expressed in terms of

the partial derivatives of the harmonic function ¢1. This function, which with the

selected coordinates has the dimensions of force, is thus a stress function.

The formulas (3,3) determine, through partial derivatives of another function

_02, all three components u, v, and _w, of the total displacement vector of a point

in the inextensible middIe surface of an elliptical shell, arising as a consequence

of the bending deformations of this surface. The function entering into these

formulas can be called the harmonic displacement function of the elliptical shell.

Finally, all three components of the strain tensor in the case of infinitesimally

small bending deformation of the elliptical surface, are determined by the last

group of forlnulas (3.4). The formulas for these components have the _ame form

* In this paper 'th' --- 'tanh.' 'ch' -= 'cosh,' 'sh' _ 'sinb' - Publisher.



asthe formulas(3.2). Thefunction_sis the fundament1harmonicflexural strain
functionof anelliptical surfaceof revolution.

Settingb = a in formulas(3.2, 3.3, 3.4), we obtain as a special case, the

fundamental formulas for a spherical shell:

Nl= al__ch2a__, S=___ch2,t _ , N,=____ch 2_o____}tOa (3.5)

x,---- Ten "_, ".= ch-'_ , xt=-- chZ,, (3.6)

U = ch_t 0[_ V ch_ e}ot W--: --a -_- aLh_ OqL.' , a_ (3.7)

§ 4. The hyperbolic shell. All of the fundamental f_ rmulas for a hyperbolic

shell can be obtained from the corresponding formulas f,)r the elliptical shell

examined above, by replacing the actual semi-axis of the ellipse, b. by the

imaginary semi-axis of the hyperbola, bi, and c_ by czi. In place of the harmonic

equations (3.1) for the fundamental functions _i (i = 1, 2, 3), we now have the

wave equation:

#"9i d=gi 0

0a: _z ( 4.1 )

Substituting into formulas (2.5, 2.6, 2.7

r r' b .Sill _t, a fb2_-a 2 Sil|"3(1211"42t b 2

and expressing the functions U i and V i in these formulas through the partial

derivatives of the appropriate functions 9i of the wave equation 4.1), we obtain

3VI M_ t:_l'_ ct ' t C°S-_X *)[5

?¢-' t, gtT_ t ,,-'si.-' _ '_

1 , '_9_ t , #9,

×' T, blOT-..+ ,,: _i,: -_ e,x

(4.2)

(4.3)

(4.4)

By means of these equations, the unknowll functions of the homogeneous equa-

tions (2.1), ('2.2), and (2.3) for a hyperbolic shell of ne}ative curvature, arc ex-

pressed In terms of the partial derivatives of three functions (Pi(i = 1, 2, 3), each

of which satisfies the wave equation (4,1).



§5. Boundaryvalue problems in the theory of equilibrium and bending of

shells of revolution. 1. Let us examine the problem of equilibrium and bending

of elliptical and hyperbolic shells, limited in height by the planes z = z I and

z = z 2 (Fig. 5). In this case, the height of the shell in the direction of the z

axis is

h =- z_ -_-z2 (5.1)

At the edges of the shell, the independent variable ct has the value

a) for elliptical shells:

% =: arc sh- :' a= -- art sh :" (5.2)
t b: - at t ' l b=- z.,-'

b) for hyperbolic shells:

:1 _2 -- tlrC Sill Zl
a t = lir_:silil 1,=7 :l""' l, ......bi-t ::' (5.3

Let us seek a solution of equations (3.1) and (4.1) in the form of the simple

trigonometric series:

(5.4)

We obtain the following formulas for the coefficients in these series:

/,,,(:c) : Ainshn=-t l/i,,chl_:q g'i,_(a) =_ Cmsinn:_-F Di,,c.sn:_ (5.5

Here A m , Bin , Cin, and Din are constants of integration. Substituting from

(5.5) into (5.4), we obtain

w', (:_,_) :- _ (c_ ._,n.= q b,,, cos,,:,)_',,_,,,_ ( 5.6 )

In this way, these formulas represent the general solution of the fundamental

v:quations for elliptic and hyperbolic shells - of the harmonic equation (3.1) for

g g

Fig. s.

elliptic shells, and of the wave equation

(4.1) for hyperbolic shells.

The index i, as before, can take

on all three of the numerical values 1,

2, and 3, corresponding to the three dif-

ferent problems (one static and two geo-

metric).

Calculating the partial derivatives with respect to a and 13 from the functions

(5.6) just found, and then substituting these derivatives into the right members of



".he general equations (3.2), (3.3), (3.4), (4.2), (4.3), a:td (4.4), we obtain solu-

tions in the form of simple series for all of the unknowt static and geometric

quantities pertaining to the two shelLs. All of these sol _tions are correctly de-

termined up to the constants of integration of the corresponding problem. These

constants must be found in each special case from the boundary conditions, which

are given at the edges a = a 1 and a = c_2 to the extent of one condition throughout

each edge for each of the three problems.

In the case of the purely static problem, we will assume that both the elliptic

and hyperbolic shells are supported by flexible diaphragms at the edges a = a 1

and a = az, each acting only by forces lying in the plates of these diaphragms,

and forming, together with the shell, a single three-dimensional closed system.

With regard to external forces, we will assume that the shell is acted on by

vertical edge loads, applied along the edges c_ = c_I, a = a 2, and given as a function

of the angular coordinate 8 along each edge, with regard to the whole shell,

this load must be a system of forces in static equilibriu n. The action of the

edge loads described here is expressed through the trans nission to the shell, at

points along the edges a = al and a = c_z, of normal str_ sses NI, directed along

the tangent to an appropriate meridian, and which are t lernselves given functions

of B. In accord with the requirem_'nts of the momentles: theory, the radial com-

ponents of the vertical load must be balanced by the pl;ne diaphragms,

According to the first of formulas (3.2) and (4.2), the solution of the static

problem described here reduces to the determination of ;tress fnnctions _01 and

-l,t, periodic in B, whose partial derivatives with respec: tocx must yield a given

function of B along the parallels a = a I and c_ = a 2.

In the case of the purely geometric problem of the letermination of the dis-

placements, we shall assume that at the edges of the sh_ll, c_ = al, a = a 2, there

arc only tangential displacements, given in magnitude as functions of t3. In

accord with the general formulas (3.3) and (_.3) for the displacements v__, the

problem reduces also in this case to the determination cf periodic functions _0z

and q'z, whose partial derivatives with respect to ee must take on the values of a

given function of 13 along the paralleLs _ = al and a = o2.

In examining the other geometric problem, pertainitg to the pure bending

(without stretching) of the surface, we shall assume that this bending is specified

by giving, as functions of 13, the flcxural deformations _t along the edges of the shell

a = c_1 and a = _t- This boundary value problem has a complete anaLogy with the
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purely static one formulated abovc; and the solution of this problem reduces to

finding the functions of infinitesimally small bending deformation, likewise

periodic, which are designated as _o3(¢x , t]) and q_3(a, 13) for elliptic and hyperbolic

shells respectively, and whose partial derivatives with respect to c¢ at cz = a t and

{x = a 2 nrust yield a given function of B ill accordance with formulas (3.4) and

(4.4) for _z.

Thus, for all three of the problems stated here, with the indicated boundary

conditions, the auxiliary functions _i(a,B)of the harmonic equation (3.1) for

elliptical shells and '_i(a,13) of tile wave equation (4.1) for hyperbolic shclls,

must be constructed such that the partial derivatives of these functions with

respect to a at ct = a 1 and a = a z, reduce to given functions of 13.

Representing these given functions for each of the three boundary value

problems couforming to the general formulas (3.2-3.4, 4.2-4.4), in the form of

trigonometric series in cos n_, and then imposing the boundary conditions in-

volving the derivatives with respect to ot of the fundamental unknown functions,

we obtain systems of linear, algebraic equations for the coefficients of tile trigo-

nometric series (5.6). For the nth term of the pertinent series, these equations

have the following form:

a) for elliptical shells

1

A.i ch n_ l + Bm sh n% = -_- Pm

Ani ch tl_tI -}- B._ sh n% = 1-;q_ (5.7)

b) for hyperbolic shells

Cnteosn% D.i sin n% ln /'in, Cni cos nat_ D,,i sin n_t= t (5.8)

AS the nuulhcr of I[le l,rltl ill the perlinent trigonometric series, the index n

can here take on any integral value; the index i designates to which one of the

above-described separate problems equations (3.1) and (4.1) refer.

with i = 1, equations (5.7) and (5.8) will refer to the purely static problem

of the equilibrium of momentless shells having, at the edges a = a 1 and a = a a,

diaphragms in the form of elastic membranes, and sustaining given normal stresses

N i at the edges a = a 1 and a = c_.

With i = 2, we refer equations (5.7) and (5.8) to the purely geometric

problem of infinitesimally small bending of shells with tangential displacements

"/_2'given at the edges a = a 1 and a = a z. Finally, with i = 3, these equations per-

tain to the infinitesimally sinall flexural strains of shells with flexural strains

given at the _.dges a = a t and a = ¢z 2.
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":or each index n (n = 1, 2, 3 .... ), and for each of the three problems indi-

cated above, the right members of equations (5.7) and (5.8) will be known quanti-

ties, proportional to the coefficients of the trigonometxic series for the pertinent

function which is given at the edges _x = a I and a = a 2.

Solving equations (5.7) and (5.8), we obtain:

a) for elliptical shells

-|hi _--- I Pn_shna2 ql_i shn=l 1] I q,i ('111=1" -PPll chna2
n shn(a_ +a_) "'_ _- shn(xl _-x2) (5.9)

b) for hyperbolic shells

C_li = 1 Snl _jn_l --/vii sinner 1 "%ti COS/I_I COSI'/_2
n sin n (ax- -a2) D,,_ -- r"i (5.10)n sin. (_, _2)

With given quantities Pni, qni' rni' Sni (u = 1, 2, 3 .... i = 1, 2, 3), these

formulas determine, generally speaking, all the coefficients of the trigonometric

series (5.6), and consequently also the sought-for functions ¢i(_,/3) and _i(a,t3)

for all three different problems of elliptic and hyperbolic shells. However, a

more det'iled analysis of formulas (5.6) shows that hyperbolic shells of negative

Gaussian curvature, both in regard to the momentless stress state and also in regard

to their infinitesimally small bending, differ in princip e from elliptical shells,

which are shells of positive curvature. It i_ clear in for nulas (5.9) that the

determinant of the system (5.2), sinh n(a I - az), with a t ¢ a 2 cannot become zero

for any of the values n = 1, 2, 3 ..... With _iven finite Phi and qni' the coef-

ficients Ani and Bni thus take on completely definite fil ire values. Hence, it

follows that with the system of boundary conditions indi:ated above, the harmonic

function _i(c_,B) admits a completely determined, and, moreover, unique solution,

both in the case of the purely static problem, and also ia the two other cases of

purely geometric problems. In the case of the homogene )us boundary value

problems, i.e., in the absence of normal stresses, tangen ial displacements, and

flcxural strains at all points along the edges of the shel , we will have the trivial

zero solution for all three harmonic functions. As applitd to the static problem,

this means that if the elliptic shell, supported by plane membranes at the edges

a = a 1 and _ = a a , carries no load whatsoever, then the internal stresses in this

shell are everywhere equal to zero. A momentless, inext:nsible elliptical shell

in the presence of plane shear* diaphragms at its edges i; a three-dimensional,

* In the terminology of some American authors, a "shear diaphragm" is taken _o represent an edge member whose

rigidity within its own plane is infinite, but zero with respect to displacement normal to that plane- Translator's note.
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statically determinate system. Static indeterminacy of such a shell can occur as

a consequence of an excessive number of conditions pertaining to its edges. This

indeterminacy can be resolved by examining the extensional strains of an elastic

shell, which depend linearly on the internal tangential stresses.

As applied to the geometric problem, an elliptical inextensible shell whose

edges, a =otl, _ = a2, in the presence of shear diaphragms, cannot undergo any,

dcformations in the planes of these diaphragms, is also, like a closed, inextensible

sphere, a three-dimensional rigid surface. Infinitesimally small bending deforma-

tions of such a surface arc impossible. These bending deformations are possible

only, if an edge of the shell does not have any constraint.

Analyzing formulas (5.6) pertaining to the hyperbolic shell of negative curva-

ture, we sec that the determinant of the system (5.8) can become zero for certain

values of the argument n(c_ I - c_2). These values are determined from the equation

n(a,---==) = mr, (5.11)

in which 11_!iand n can take on any, integral values.

with given loads, displacements, and flexural strains at the edges cx = c_l,

c( = cx a of a hyperbolic shell, the coefficients Cni and Dni of the functions q,i(a,/3

of the wave equation can take on infinitely large values. In the absence of the

indicated boundary values, formulas (5.6), together with (5.9) furnish an indeter-

min:_tc solution for the functions '1,i of the wave equations. As applied to the stntic

problem, this means that a hyperbolic shell of the Shukhov tower design, having

"shear diaphragms" in the form of flexible but inextensible membranes at the

c_ = c_l, c_ = a:_, in contrast to the elliptic shell, permits solutions for the internal

stresses which are not only zero, but also different from zero, in the absence of

an) external load. And indeed, this also constitutes the static criterion of the

infinitesimal geometric variability of momentless shells of negative curvature,

first expressed in reference [6] and in monograph [8].

The purely, geometric method, based on the notion of the static-geometric

analogy', and proposed in the previously referred- to monograph [1J*. is in com-

plete agreement with this criterion.

Wc also obtain direct confirmation of this method from the solution presented

here. In fact, referring the wave function _i, determined with coefficients (5.10)

*The [1] appcars to be a typographical error for [8]- Translator's note.
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of formula (5.6), to the purely geometric problem, and supposing (in the case of

the homogeneous boundary value problem) the displacer_ents v i and the flexural

strains _2 at (x = a t and a = c% to be equal to zero, i.e°, assuming that the

hyperbolic shell, as well as the elliptical shell examined above, is constrained

at the edges a = a I and a = a 2 by diaphragms which are rigid in their planes, we

have indeterminate, non-zero solutions for this functior:. These solutions arc ob-

tained from formulas (5.8) with rni = 0, _ni = 9, and wizh the fulfillment of

equation (5.11). This analysis shows that a hyperbolic ._hell of negative curvature,

examined as an inextcnsible surface in the presence of ;hear diaphragms at the

edges of the shell (each diaphragm freely deforming on?y out of its plane), can

admit infinitesimally small bending deformations, in ct=ntrast to the similar

elliptical shell.

All of these bending deformations, and the possible non-zero stress states

which correspond to them in the sense of the static-geol:_etric analog),, are described

correctly to within constant multipliers by particular, t nstable solutions of the

wave equation, being, in fact, fundamental solutions of the homogeneous boundary

value problem for this cquati,.n, and having a mathema ieal analogy with the

problem of natural longitudinal vibrations of an elastic rod. These unstable eigen-

solutions of the wave equation are associated with those terms of the series (5.6)

for which, in accordance with (5.8),

Hence, we have:

'.iun(xt---c%) = II (5.12)

i,_r:

/-&
(5.13)

Here m and n are arbitrary, mutually independent _,hole numbers (m, n =

1, 2, 3 .... ). Formula (5.12) can also be written in the form

Mn(x t _):: sin';"--" (5.14)

Expressing the quantities _t and c( a in _his equatior in terms of the coordinates

of the edges of the shell z l and z 2 by means of formuia_ (8.3), we obtain

_ _ (5 _.}t, _ .... - _.i,,'"_" (5.15)
g _z:-7_,'-'_7_7:-;- <: _ - ,,

If the relative coordinates gl = Zl/b, g2 = zz/b arc now introduced for the

edges of the shell, then equation (5.18) becomes

__'2- ='....... , _in-'"': (5.10)
g(l i 7,'-')(t • __,:) "
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Those relative dimensions for which the wave equation of the appropriate

static or geometric homogeneous problem will have non-zero solutions are de-

termined by equation (fi.16). These critical dimensions bounding the shell along

the axis of revolution can be called the critical heights.

Giving different integral values to the indices in formula (ft.16), we will

have, for the critical heights of the hyperbolic shell, an innumerable multitude

of values which together form a spectrum of eigen-values for this parameter of

the homogeneous boundary value problem.

If the plane z = 0 is a plane of symmetry for the shell, then formula (5.16),

with a shell height of 2h, goes over into the following:

Hence, we find

')_ , nit
m sin--

l,2 + tJ n

h _ bl +cosm_l.
sin ,nn / n

(_.17)

(5.18)

Since the quantity m/n "_ 1, with integral values of m and n, is a rational

number of the unit interval (proper fraction), then hence it follows that for hyper-

bolic shells of negative curvature, there exist infinitely many values of the critical

height h. Setting, in particular, n = 1, we obtain h = m.

This result shows that for shells of finite height, the first term of the series

(5.6) will always yield a definite and, moreover, unique solution- different from

zero in the case of the non-homogeneous problem, and zero in the case of the

homogeneous problem.

This means that a hyperbolic shell loaded on the ends by normal forces dis-

tributed according to the law cos t3 or sin B, and reducing to a single bending

moment with regard to the whole cross section (higher order moments corresponding

to the renraining terms of the series n = 2, 3, 4 ..... are equal to zero), is a rigid

system, and tile internal stresses in the cross section of this system are distributed

according to the law of plane sections.

Setting 11 = 2m, m = 1, 2, 3 .... in formula (5.18), we obtain h = b.

Hence, it follows that if the half height of the shell is equal to the imaginary

semi-axis of the hyperbola generating this shell, then all the even numbered

terms in the trigonometric series (5.6) will yield particular, unstable solutions

taking on infinitely large values when the corresponding right-hand terms of
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:quatiou (5.8) arc different from zero, and indeterminate solutions with the right-

hand terms equal to zero.

",qith n = 3m and m = 1, 2, 3 ..... formula (5.18) for the critical height h

gives two values: h = _ and h = _ /3

with these values, the terms of the series (5.6) with the numbers n multiples

of a (n = 3, 6, 9 .... ), will yield infinitely large values for the unknown quantity

in the case of the non-homogeneous boundary value pr,_blem, and indeterminate

values in the case of the homogeneous problem.

Setting n = 4m, m = 1, 2, 3 ..... in formula (5.1b), we obtain two new values

for h: h = (4-2 + 1)b and b = (4-2-1)b.

with these values of the height h, the special terms of the trigonometric

series (5.6) witl be associated with terms whose indices are multiples of 4(n = 4,

8, 12 .... ).

All tile rcs, of the infinitely many values for the critical height h can be

obtained from formula (5.18) in similar fashion.

We note that to the nth term of the series (5.6) fcr the critical height h there

corresponds not one, but (n-l) values. Thus, for example, for the fourth term of

the series (5.6), formula (5.18) gives three values for h: h = b, h = (',/2 + 1)b, and

h = (/2- 1)b.

The first of these values is obtained with n = 2m tnd m = 2; the two others

with I1 = 4m. and Ill = 1.

'2. We now examine the homogeneous boundary value problem of equilibrium

and bending of a closed symmetrical shell consisting cf three shells: two end

I _-L_

Z

Fig. (;.

elliptical _he:ls and one middle elliptic

or hyperbolic _hell (Fig. 6). We will

assume that tt.e geometric dimensions

of the end ell ptical shells are such that

there are corn non tangents to the meri-

dians at the j_ nctions of these shells with

the middle sh, 11. In other words, we as-

sume that thc closed shell of revolution,

in each of the two cases illustrated in

Fig. 6, is obt_ ined by revolution of an

appropriate compound curve, not having corner points at the lines of contact.



In the interest of simplicity of computation, without reducing the generality

of thc solution of the problem, we will examine only states of stress and bending

of shells which are symmetrical with respect to the plane z -- 0, as shown on Fig. 6.

In this case, when formulas (5.6) are applied to the middle shell, all terms which

are even functions of a drop out. The formulas assume the form:

Both of these formulas pertain to the middle shell of height 2h. The harmonic

function for a middle elliptical shell is determined by the first of these formulas.

The second formula gives the function satisfying the wave equation for a middle

hyperbolic shell. The independent variable ct in formulas (5.19) can range

h h

= _ I to a = m'q' sh VDfrom _x arc sh t%.r- 2 h= . _. h =

in the case of the elliptical shell, and

h h
froln at= --are sin - ___ to _ = itrl'Sill ----

V l,a t- h: I")_ 4- h _

in the case of the hyperbolic shell.

Applying the fundamental functions ¢i and _i, which are determined for the

middle shells by, formulas (5.19), to the static problem, we have these formulas

for the stresses N I and S:

a) for an elliptical shell

,'_r I _ _- t:]l 0t _/1/" --j_) ,_[_7_-_ E/'/An (h iioL fob II_ ( _. o 0 )

I E nA,, sin mt sin n _S .... 7- _ -s_- 0t

b) for a hyperbolic shell

t
N, = -_- cos = 1/b_- a' si.' = _,, nO. cos r= cos n_ ( 5. e 0')

I EnCnsinno_sinn _S = -- T c°s2 a

since formulas (5.20) pertain to asymmctrical state of equilibrium, then in the

sequel we can limit our examination to either half of the shell, for example, the

lowcr.

The harmonic function describing the stress state in the end elliptical shell

must be constructed such that it is regular at all points of the ellipsoid, including

the pole. This condition is satisfied by the following function:

?' = _ A.'e-""cos n_ ( 5.21 )



HereAt'1 is anarbitraryconstantfor the end elliptical shell, n is a positive

integer (n = 1, 2 .... ), a' is the independent variable f_r this shell, ranging in

the extremes from a' = a 1' to a' = co. The cordinatc value a I' corresponds to the

line of contact of the end shell with the middle one, The value a' = oo corresponds

to the lower pole of the lnwer end elliptical shell.

We have the following formulas for the internal stresses NI' and S' of the

lower end elliptical shell:

t
NL' = - ,?V (.h_' I_QT_+ a'_sh _' y, nA,'e-"=_osn,_ (5.22)

S'= - t]=,.h"-C EnA,,'e "" sit, n_

tlere the primes indicate that the appropriate magl itudes pertain to an end

elliptical shell. Since, according to the conditions of the problem, the closed

shell of revolution has common tangents to the meridian curves along the parallels

of contact of the end shells with the middle one, then the stress state for the

entire compound shell must be such that the internal n(rmal stresses N 1 and shearing

stresses S satisfy continuity conditions at points along he lines of contact of the

middle shell with the end ones, in the absence of any external load along these

lines. Wc will have two mutually independent boundary conditions at the lines of

contact:

'_'_t "Yl' _ I), S -- S' = 0 ( 5.23 )

ttere NI and S pertain to the middle shell, and are calculated from formulas

(5.20) in the case of the elliptical shell and from formJlas (5.20') in the case of

the hyperbolic shell. In these formulas, the independent variable ct is in both cases

to be assigned the value c_l, corresponding to the lower-most parallel of the middle

shell.

The s_resses N 1' and S' in equations (5.23) are corn ,uted from formulas (5.22)

for the lower end elliptical shell, with the coordinate • alue a' = _I', which

determines the position of the line of contact of this stell with the middle one.

Applying the conditions (5.23) to a shell which has positive curvature every-

where as shown in Fig. 6, and taking into consideration the fact that the meridians

of the joined shells have a common tangent at the poin of contact, we obtain:

I cho_t,e_n=,An t = Pnl ch a t ch n'lA. -t- a-7

t 2 + tch2 at'e-n_'"An ' qn-- _- ch _l sh rmlA" =

(5.24)
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Here a and b are tile semi-axes of the ellipse for the middle (central) shell;

a' and b' are the semi-axes of the ellipse for tile end shells; A n and A n are un-

known coefficients of the series (5.19) and (5.21); Pn and qn are arbitrary tcrms

which depend on the external load and are proportional to the nth term of the de-

composition of this load into a trigonometric series.

In the case of two elliptical shells joined along a line of contact having a

radius r = rl, we have chct 1 = a/r I and chef 1' = a'/r 1. By virtue of these relations,

equations (5.24) become:

A nchrm I + A 'e-a'," = rtp _

aI a,i ,

-- A,t _- sh n_ l + A.' b-7-e ..... rt2qn ( 5.2 5 )

We obtain the following general formula for the determinant of these equations,

pertaining to an arbitrary nth term of the trigonometric series:

iII

a'l + _-sh mq) e.... ' ( 5.2 6 )A,_ = (_r ch na1

In the case of the elliptical shell being examined, the quantities a, b, ctl',

b', and n entering into these formulas can take on only positive values. Hence, it

follows that the determinant A n of equations (5.25) cannot reduce to zero for any

value of the index n. Consequently, with assigned arbitrary (right-hand) terms,

equations (5.25) furnish completely determinate values for A n and An'. In the

case of no load, all the coefficients An, An' of the trigonometric series (5.19)

and (5.21) will vanish.

A thin-walled closed system consisting of shells of positive curvature (Fig. 6)

is, like a closed spherical or elliptical shell, a three-dimensional, geolnetrically

stable, and statically determinate system.

Making use of the method of the static-geometric analogy, and replacing N i

and S by K z and r respectively in the preceding equations, we arrive at the con-

clusion that the closed compound shell having positive curvature everywhere,

which is under consideration here, cannot have flexural strains in the absence of

membrane strains. Such a shell, considered as an inextensible surface, is a rigid

three- dinlt!nsional systeUl.

Let us now examine a closed shell having negative curvature in its middle

part, and consisting of one hyperbolic shell and two elliptical shells (Fig. 6).

Let a and b be the semi-axes of the hyperbola for the middle shell, and let a I'

and b I' be the semi-axes of the ellipse for an end shell. Writing out the static
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boundary conditions (5.23) with the help of the general formulas (5.20') and (5.22),

recognizing also that the meridian segments of the contplete shell have a common

tangent at the point of contact of the hyperboloid with the ellipse, we obtain:

t -_ch 0tl_e-rim''C. _- cos _, cos n_ I -4- = P" ( 5.27 )

i A n '
-- C,_ _ cos' ¢q sin n,q + V- ch2 ¢q'e .... ' = q.

ltere C n and A n' are unknown coefficients of the series (5.19) and (5,21);

Pn and qn are arbitrary terms, which depend on the external load and reduce to

zero in the case of no load. By substituting cosa 1 = a/r I and eosh a 1' = a'/r l'

(where r I is the radius of the parallel at the junction) w. • obtain:

a _. 1,2

Cncosnax+ A'ne'-"'" = rtpn, -- Cn _- sin na I + A_-e .... ' = r_qn (5.28)

Wc obtain the following formula for the determinanl of the system of equa-

tions (5.28)

a'$ a 1

A.= (v cos.,, +

It follows from this formula that for a shell of the given type, there exist

relative dimensions for which the determinant A n has the value zero for positive

integral values of the index n. For the values of na I which cause the determi-

nc_nt A n to vanish, we obtain the equations

a'_b t " a'Sb 4- m
tg n,,q -- a2b, or % = -- h- arc tg _ _ n ( 5.29 )

Hcrc m and n arc any positive whole numbers.

With given dimensions a, b, a', b _ of the compound shcll, and with arbitrary

integral values of the quantities m, n = 1, 2, 3 ..... the formula (5.29) gives

infinitely ln:_ny critical valucs of a 1.

Since the quantity c_ 1 is determined by the position )f the line of contact of

the middle shell with one of the end shells, according to the formula cos a I = a/r 1

which pertains to the hyperbolic shell, then infinitely mtny valucs of the para-

meter ct 1 correspond to infinitely many such lines of con act, along which the

equations of equilibrium, and consequently also the equations of bending of the

compound shell examined here, will have unstable soluti)ns. In contrast to a closed

elliptical shell, a closed compound hyperbolic shell can permit infinitely many

mutually independent shapes of infinitcsimally small betiding deformations. These

bending deformations, like the possiblc shapes of cquilib:ium momentless states

under no load which arc analogous to them, are explaine:t by the prescnce in the

shell of a part with negative curvature.
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3. If a sheil is described by revolution of a segment of the curve

r== a cos } ),sill (5.30)
a

not intersecting the axis of revolution Oz (a and k are certain constant quantities),

then equation (2.9) goes over into an equation with constant coefficients

( ,Y"I",_O'k'i t ,Fi-]- o_:/: (1 (5.31)-Oz=.,- -k aa

This is an equation of the elliptic type. Expressing the _-dependence of

F(z,/3 ) as an ordinary trigonometric series in which the coefficients are functions

of z, we obtain, fronl (5.31)

l-ferc t2, for thc shell of revolution can assume the value of any integer and

Ant and Bni are constants of integration in the nth term of the series (5.32). The

index i picks out one of the three problems (2.10), (2.11), or (2.12) to which the

fundamental function F i can refer.

Analysis of the problem described here shows that a shell of revolution with

meridian given by equation (5.30) belongs to the class of shclls of positive

Gaussian curvature. These shells possess the same properties which were also

examined in the above elliptical shells.

4. Let us now examine a shell of revolution with the meridian given by the

equation

With arbitrary values of tile parameters _a and k, these shells represent shells

of negative curvature. In particular, with

r=ach_ (5.34)

we will have a shell whose middle surface is gcncrared by a catcnoid.

Using (5.34), equations (2.9) assui'ne the form:

O_Ft 1 / , O_l," i \

This equation is of the hyperbolic type. Upon representing it in the form of

a single trigonometric series, the function Fi(a,8 ) assumes the form

z g 'F,(e, _)= _ Cmsin-g_+ D,,,COSa}"_n-T_"-f_l),'osn}
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tIere, as before, n is an arbitrary whole number, and C n and D n are constants

of intcgralion.

By applying the above-outlined method of static and geometric analysis to a

shell of the class (5.34), we arrive at the conclusion that, as shells of negative

curvature, these shells are essentially different from shells of the elliptic type,

and can admit particular, non-zero solutions both in the case of the homogeneous

static problem, and also in the case of tile homogeneous geometric problem.

5. Let us examine still another class of shells, generated by revolving, around

tile axis Oz, tile algebraic curve

r = A(z- a)" (5.35)

tIcrc A, a, and g are parameters of the curve. Sinc_ all of these parameters,

including also the exponent /j, can take on any real val tes (integral, fractional,

rational, irrational, positivc, or negative), thcn equation (5.35) embraces an

extremely wide class of shells of revolution. Differentiating (5.35), we find

_.r _ (_ -- 1) •
r t _ i /" --

z -- a (z -- a) =

For the curvatures of Ihc surface, we have the forlnqlas

r" _{_.-- l)r
k I

(l + r'*) '/* (z--a)*" {l +It*r°" (z -- , )_1_"'

k2__ l 1
r(l -- r'=) 't, r 11 + I_=r*/(: ,0'1%

For the (;aussian curvature, we now obtain the forlll lla

K =ktk 2 = _(_-- ll
(z -- a) = [l + _t2rZ/(z -- a)Zl

It follows from this formula that the sign of the Ga tssian curvature of the

sur_ac_ dcpcnds only on the exponent p of the meridian curve (5.35).

As a consequence of this, we can divide surfaces, g, neratcd by revolving lhe

curve 5,35), into three types:

a Surfaces of positivc curvature (paraboloids of ditferent order)

K>0 (0<_,<l)

b Surfaces of negative curvature (hypcrboloids of different order)

K<0 (1 <_<C0)

c Surfa,,:cs of zero curvature

k = 0, I_ - 0, l' 1
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For shells with surfaces of the class examined here, the fundamental equations

(2.9) assume the form:

u_F !_ I_-- 1) (;_"-F )O--z-'- z-' --\,i_ "_+t" =[I (5.36)

For shells of positive curvature, thi_ equation will be of the elliptic type,

and for shells of zero curvature, of the parabolic type.

Integrating equation (5.36) by expanding F(z,tS) as a trigonometric series in

the angular coordinate 13, with coefficients depending only on z, we obtain,

ltl'n '2 )l'o_ll_F(z, _)= _ (A,,z-'-' - +ll,,z (5.3'7)

Here Pn is a characteristic number, depending on the index of the nth term

of the series (5.37) and on the exponent of the meridian curve (5.35), and deter-

mined according to the formula:

1,,,_ I'T /,_(_ l)i,_ _1) (5.38)

Since, for shells of revolution, n can assume integral values, then it follows

from formula (5.38), that thc quantities Pn will be real numbers for shells of

positive curvature, and imaginary numbers for shells of negative curvature.

Determining all of the fundamental static and geometric quantities from the

general formulas (2.10, 2.11, 2.12), and applying the method of initial functions

proposed by the author in reference [1], wc can, in this way, examine a whole

series of new problems in the theory of equilibrium and bending of shells of the

class examined here, and develop new rational engineering shapes for engineering

COIlSlFHCI ion.

[.ct us examine a shell of revolution of limited height. The constants of

in c/ration A n and Bu of the general series (5.3q) are determined by the boundary

conditions, which must bc given along the edges z = z 1 and z = z 2 to the extent of

one static condition and one geometric condition all along the edges. In the static

problem of the equilibrium of a momentless shclI, the boundary conditions will

pertain either to the normal stresses N i or the shear stresses S.

In the geometric problem of the bending of an inextensible surface, the

bonndary conditions will pertain, in accordance with the styptic-geometric analogy,

either to the flcxural strains t<z or to the twisting strains r.

Assuming as before, that the shell has "shear diaphragms" in the form of

[]exible, incxtensible plates at the transverse bounding edges z = z I and z = z 2,
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wcwill haveasystemof twohomogeneousequationsf(r thecoefficientsAn and
13n in thc caseof thehomogeneousboundaryvalueproblem.

--I _ Pn --l--Pn --1 'Lp n --l--pn

Anzl _ .ft. Bnzx I =0, Anzz 2 _}_ ]3nZ z Z -._-0 (5.39)

Equating the determinant of the system (5.39) to zero, we separate out that

class of shells for which the equilibrium shape falls to show uniqueness. Such

shells, considered as inextensible surfaces, are thin-walled, geometrically variable

systems, which permit infinitesimally small bending deformations, even in the

presence of transverse, inexrensible diaphragms at the t)ounding parallels z = z 1

and z = z z .

In this way, we obtain

'l,Pn ( z, )'/.Pn]- ' -,v,_. -_ (5.40)

Since, according to the conditions of the problem, z I :_ z2, then equation

(5.40) bccomcs

'/_1)n "(/,Pn

(5.41)

Equation (5.41) for Pn yields infinitely many imaginary roots, and these roots

arc determined by the formula

2., ,-ri

P" _1 (5.42)

}tore in can take on the valuc of an,," whole number , m = 1, 2. 3 .... ).

It follows from formulas (5.38) and (5.42) that equ;tion (5.36) will be satis-

fied only with /2<0 and p>l, for all shells of negative c Jrvature, for which the

fundamental differential equation (5.36) is of the hyper)olic type. The particular

unslablc states of stress and bending deformation of suc! shells, expl. ained by

their negative Gaussian curvature, will occur for tcrnls )f the series 5.37) having

n detcrlllinud bv the fornlula

In zl nit:
zs V-4p.(_.--I)(n_-- I)-- 1

Since n_J is arty whole number, it follows from this t tat there exist certain

rcla_ivc dimensions zl/z z for which a given shell can have infinitely many cigen-

sltapcs of uquilibrium and bending. Such shells will belrng to a thin-walled

geometrically variable three-dimensional system, as shown in the monograph [1]*.

There arc infinitely many degrees of geometric variabil ty of these systems. As

pointed out ira the monograph [1]*, the design of such sh :lls ought to p_oceed in

*The [11 appears to be a typographical error for [8]- Translator'snotc.
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accordance with a bending theory. The bending and twisting moments arising from

an arbitrarily assigned load in shells of negative curvature are not of a localized

nature.

For shells of positive curvature, equation (5.36) is not satisfied for any real

value of Pn" This means that the determinant of the equations, (g.40) cannot

become zero with 0(,a_I. Hence, it follows that shells of positive curvature, in

the presence at the edges z = z 1 and z = z 2 of "shear diaphragms', inextensibic

in their planes, arc stable, statically determinate, three-dimensional systems.

Indeterminacy in the solution of the static problem for shells of positive

curvature can arise only as a consequence of static indeterminacy in the con-

straining conditions at the edges of the shell, i.e., in case the shell, aleng an

edge or part of an edge, is also constrained

t--

/ 1
/J I

Fig. '7.

from vertical displacement, resisting a

movement of the edge out of its plane.

As has been repeatedly pointed out

by the author, moments in shells of positive

curvature have a regional, localized

character. These moments can be deter-

mined in accordance with our general

engineering theory of shallow shells.

6. Let us now examine a shell of

revolution consisting of two spherical

shells. Let the radii of these shells be a t and a 2. The radius of the parallel

serving as the line of contact of the two shells is here designated by rk. We de-

signate by Yl and Y2 the angles between the axis of revolution Oz and the tangents

to the meridians of the shells at points along their line of contact. The positive

sense of these angles is indicated on Fig. 7. The origin for the axial coordinate

z for each of the two shells will be chosen in the geometric center of the ap-

propriate shell.

Let us first examine the problem of equilibrium of the compound closed shell

undtr the assumption that the angle _ = )'I- )'z between the tangents to the meri-

dians of the two joined shells has a positive value. Writing the equilibrium con-

ditions for an infinitesimally small element of the shell in the neighborhood of

the iinc of contact, we obtain:
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""a'_"1 ( aNi x Oqr (5 4 3 )Sl+sin t1"-_--- Ss + sin Tl--_ ) = -- q_ Of_

cos 71Nl -- cos "l'_Na ----- -- q_

Here $1. NI, $2, and N 2 are the shear and normal stresses directed along the

meridians for shells 1 and 2 respectively;

q:=q_(_), qr = qr(_), qa = qa(_)

ate components of the external load per unit length, applied along the Line of

contact, and given as a function of the angular coordinate t3, Of these compo-

nents, qz is the component acting parallel to the axis ()z, qr is the component

directed along the radius of the joining parallel, and q3 is the component direc-

ted along the tangent to this parallel.

The static boundary conditions necessary in the momentless theory, per-

taining to points along the common line of contact of the two shells, are expressed

by equations (5.43). We will assume that the compound shell examined here is

acted on by forces applied only along the line of contazt. These forces, repre-

sented in equations (5.43) by the linear loads qz, qr' al d qB' must be a system of

forces in static equilibrium when the entire thin-walle, system is considered.

with these conditions, the harmonic functions for the two spherical shells must be

selected such that the internal stresses determined by t lese functions have finite

values everywhere, and go to zero at the poles of the sl ells- the lower pole being

in shell 1 and the upper in shell 2.

Applying the series method as in the case of equations (5.3].) and (5.36), and

subjecting the harmonic functions to the above-formula:ed conditions of regularity

at all points of the shells, we obtain

"1_,-ZA,,e .... ( ,,s tt_, _:_ _.a I/,,e ..... ,srt_ (5.44)

Here a I is the indcpcndent variable for the lower sl ell (shell 1) and c_ is the

independent variable for the u?pcr shell (shell 2); n is he number of the term in

the appropriate series, taking on arbitrary positive inte _,ral values.

The harmonic function ¢1 for the first shell of radits a I is determined by the

first of formulas (5.44). The independent variable a I in this formula can r_nge

between the limits

arc sh :,h

tl12 21_2
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Here Zlk is the axial coordinate of the line of contact, measured from the

center O l of the first shell.

The harmonic function q_ for the second shell of radius a 2 is dctermincd by

the second of formulas (5.44). The independent variable az in this formula ranges

bctwcen the limits

zl0t

--_z'_<arcshv_, =zht

Here Zzk is the axial coordinate of the line of contact, reckoned from the

geometric center 02 of the second shell.

For the shell shown in Fig. 7, with ¥t>0 and y2>0, both of the quantities Zik

and Zzk have negative values (the axis Oz is directed down).

We have the following formulas for the internal shear and normal meridional

stresses of the two shells:

N, -- a_ y_ Anne .... cos n_,

St= alrT X_ Bnne "',sinn_,

a 2
N2 = _ y, A,,ne.... t'os._

$2 = a_ ___ B.nen,,sin nilr_ 2
(5,45)

The coefficients A n and B n (n = 1, 2, 3 .... ) must be determined from the

boundary conditions (5.43). Representing the right members of these equations by

appropriate trigonometric series, we obtain a system of two simultaneous linear

equations for the coefficients A n and B n associated with the nth term of the

series (5.45).

r h2
__ __ l)n-- a t (1 -- n sin'h) e ._,h A,, + a_ (1 + n sin _.) e "='j' Bn

-- a lcos'_le n_,p_ An-- a 2 cos Tze n=,a lln - Qn
n (5.46)

Here a 1 and a z are the radii of the joined shells, r k is the radius of the corn-

mon line of joining, and Pn and Qn are coefficients of the appropriate trigono-

metric series for the right members of equations (5.43). With the right members

of equations (5.43) assigned as functions of iS, these coefficients have completely

dctcrmiuatc values.

The unknown coefficients A n and B n of the trigonometric series (5.45) will

have completely determinate values if the determinant of equations (5.46) is

different from zero for every positive integer n. The general formula for this

determiuant has the form

An ataze_('o.l,-'zl, ) [n sin (';2 -- "It) + cl+s 7z + cos -;j]
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It is clear from this formula that the compound shell being examined can be

designed according to the momentless theory for arbitrary loads, subject to the

condition that the quantity

C. = n sin ('_ -- "h) + c,,s "h + cos "h
(5.47)

does not become zero for any positive integral value of n. This will be the case

when the angle of contiguity (p = Yz- Yl, between the tangents to the arcs of the

two circles at their point of contact does not have a n,:gative value.

If this angle of contiguity ¢ = Yt - Yl at the point of contact of the two

circles has a negative value (Fig. 8), then the detcrmiaant of the system of

equations (5.46) can become zero. These particular un;table solutions will occur

If the right member of the equation

COS ','1 _" C0_¥1
tl = -- -- : ....

m. (',': -f,) (5.48)

is a positive integer,

As an appendix which provides great insight into the problem considered here.

we shall assume that the junction of one shell with the other is accomplished with

the help of a third shell described by part of the surface of a torus with arbitrarily

that meridians of the two joined spherical

shells are smo¢ thly connected without

corner points, _y means of circular arcs of

arbitrarily small radius. In such a geo-

metric interpr_ tation, the angle of con-
Fig. 8. Fig. 9.

tiguity tp = Y2" Yt, together with the

curvature of the parallel at the junction,

determine the local value of the Gaussian curvature of the surface, referred to an

elementary strip at the transition from one shell to the other.

It follows from formula (5.47) that the shell shown in Fig. 7. and charac-

terized by the fact that the Gaussian curvature in the reighborhood of the junction

has a positive value yz-yl >0, is a rigid, thin-walled _ystern, not permitting any

bending in the absence of stretching. The shell shown :n Fig. 8, having negative

curvature yz- yt<0 in the neighborhood of the junctiol , with the angles Yt and

Yt giving positive integral values for n in the formula '5.48), is, according to the

momentless theory,, an unstable, geometrically variable system, permitting in-

finitesimally small bending.
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If thc trigonometric quantities in formula (5.48) are expressed through the

basic dimensions of the joined shells, then we have

al+al (5.49)
n=- h

Here a t and a 2 are radii of the shells, t_ is the distance along the axis of

revolution between their centers O l and Ot. In accordance with the above exposition,

formulas (5.48) and (5.49) properly refer only to tho_e shells for which the local

curvature at an arbitrarily small elementary strip of the junction has a negative

_aluc.

For the symmetrical shell shown in Fig. 9, we have

2a d

n =-h- -- h

It follows from this formula that the examined symmetrical shell with nega-

tive curvature in the zone of the junction will have particular, unstable solutions

in all those cases for which the distance h between the centers of the shells is
I

contained an integral number of times in the diameter d.

In the special case in which h = t/2d, we obtain n = 2. This means that for the

given shell, unstable shapes of equilibrium and bending will bc associated only

with the second term of the appropriate trigonolnetric series. In such a shell,

infinite stresses arise from a momentlcss self-equilibrating load corresponding to

the second term of the series, distributed along the parallel according to the law

cos 213.

One should note that the shells examined here, having negative curvature

only along certain lines, in contrast to shells of the hyperbolic type with negative

curvature over the surface, can, with given dimensions, have only one degree of

freedom of geometric variability, and not an infinite nunlber.

§ 6. Conical elastic shells. 1. The middle surface of a conical shell is re-

ferred to the coordinates z and _.

The angle g will be considered positive when it is clockwise looking at the

shell along the positive z axis (from the top down in Fig. 10).

We have the following formula for the radius of a parallel of the shell:

r-- r I + ztg 7 (6.1)

Here r 1 is the radius of the parallel at z = 0, and )t is the angle between the

z azis and the generators of the cone. This angle will bc considered positive if

the radius r of a parallel increases with an increase in the coordinate z.
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Z z z

:'igo 10. Fig. 11. Fig. 12. Fig. 13.

In the sequel, we shall use the following abbreviated notation for trigono-

metric functions of the angle y.

s : sin'b c : cosT, /:-Ig- (6.2)

The theory of elastic equilibrium of a momentless conical shell is described

by the differential equations

3 l, 3S 0i_ (rN) q- --1,13 t-P :0, _(r,;) _-tS' t-q :0 (6.3)

a. ?¢ 1 a,, ,3 ( ,, '_ = z (- _-,,),,
-dr = -Fhc ' T r)_ if- cr _ \ _-j I:h - (6.4)

The conditions of tangential equilibrium of an element of the shell are ex-

pressed hy the first two equations. In these equations, S = S(z,t_) is the shear

stress; N = N(z,B) is thc normal stress assoc.iated with the stretching of the shell

along the generators (Fig. 11); p and q are components of the surface load di-

rccted along a generator and along thc tangent to a palallcl, respectively (Fig. 12).

The relations between the stresses and the strains far the clastic shell arc

expressed by the third and fourth equations, in which tl:e strains for a particular

shape arc determined by the derivatives of the displacements, and the stresses by

the internal forces. In these equations, u = u(z,8) and , = v(z,t3) are the tangential

components of the total displacement vector of a point, directed along a generator

and along thu tangent to a parallel, respectively (Fig. 3); E is the modulus of

elasticity; z is Poissou's ratio; and h is the thickness o the shell.

Thc normal circumferential stress is absent in equations (6.3) and (6.4). For

a conical shell this stress is easily determined as a qua ltity proportional to the

normal component of the surface load. If this componel t is equal to zero, then

the circumferential stress will also be equal to zero.

In the sequel, we shall examine the problem result ng from equations (6.3)

whcn the surface load is absent. Wc will have a system of four homogeneous

equations in four unknown functions.
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In order to obtain a general integral of equations (6.3) and (6.4), wc will

make use of the method of initial functions which we proposed in thc theory of

j____lO] shells. According to this method, the

_[_..._.._oj(fl,} tangential stresses N 1 and S I and the tan-

gential displacements u I and v 1 along an

initial parallel z = 0, considered as func-

Fig. 14.

displacements ui, v i along an initial

parallel z = 0, and along any other, z = const., are shown in Fig. 14.

tions of the angular coordinate 8 along

lhis parallel, are taken as fundamental

factors determining the stressed and strained

state of the momentlcss shell. The positive

directions of the stresses Ni, S i and tile

With p = q = 0, we will have these general formulas for the unknown functions

of equations (6.3, 6.4):

,, -77- - , /,, (_)

.,'r, .1 .),.,Ehu,_Ehu_.4- r_, In N_(_)-{.- s' \ r ln_-j ,, (_)

="--,, ++(, _ _ ,_,,+ ,,, +
+-if- r 2r, 2r In-7;-_ (_) + s _\,-_ r

In th_ teft members of these formulas stand the unknown quantities S k, N k,

L'h_tk, Ehv k . which pertain to any parallel z = const. (see Fig. 14), and which are

functions of the two coordinates z and _.

The index k indicates that the quantities determined by formulas (6.5) per-

tain to points along a parallel with running coordinate z. The radius of this

parallel is denoted by r.

In the ri!,.ht members of equations (6.5) stand quantities pertaining to the

initial functions S1, Nt, Ehut, Ehv 1 and their derivatives:

g. , d,s'_ Sl. - d2S_ . , d,'g_ du t
• i -- d_ ' d_* ' ,a¢l =-_-, tg'-- d_

As quantities determined for points of the initial (fixed) parallel z = 0 (the

radius of this parallel is denoted by rl), these functions and their derivatives

depend only on the single angnlar coordinate g. With r = rl, the formulas (6.5)
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Fi_. 16,

av t (6.10)

wt = a_

Making use of the formula thus ob-

tained, we record the value of the bending

moment acting n the ring, cxprcsscd in

terms of the tat gential displacement:

Eli (O_£'t _t

M+= -- ,-7, + +) (6.11

Further, taking advantage of the

second of the g,: ncral formulas (6.6), we

c×prcss thu derivatives of the shear forces, transmitted )y the shell to the ring in

terlns of the normal forces:

S't i_L_--Ni+-L_ 'h+tff+-1 + s+++l"++------L_" t+t
' ti(tt+l--¥i ) ri+I--tt +ll'

s_p_ x ( 6.12 )

"'oi, _-, = -- N+, _-l "t'l't---------2-1',t + N,_, , _ ,+(q _ ,,_,)

Introducing the value obtained for the bending tnon:ent (6.11) and the shear

forces (6.12 into the second equation (6.9), wc obtain:

N_, t+_c_+l -- N+, t-lci-n + qt, = ('

El [O I . ._tO*v i _PNt, i4-1 32"'_i t 1

$itl l+| Ni+l ' t $i't'lri4-I N+, let -- Ni-l, t "}-
-_- (r t 2 _-i+l) ri ri -- ri+t (ri -- ti--l} ri

02qir Oqi B

+ s+,___N_,_l+_+_=O
t i -- ri_ l

(6.13

In addition to the cquations of cquilibrium, the conlitions of continuity of

the strain must be fulfilled in the neighborhood of each ring. Tile latter con-

ditious are oblaiued by equating tile displacements of the ring and the two adjoin+n

conical shells a their place of joining to

the ring.

Using Fig. 17, we can write:

t

wt = si--i-m-_'_(u__ cos"h__-- u++_cos "h)

Differcntiating this formula once

with respect to I, replacing the radial

displaccment by the tangential in accordance with forint la (6.10), and introducing

the prc_iot_s abbreviated notation for tile conical angles we finatly obtain the
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tlere the determined quantities standing in the left members of the equations

pertain to arbitrary points of a parallel with running coordinate z; quantities

designated by the index 1 are the initial functions and their derivatives, which

pertain to points of the parallel z = zl, and depend only on the single coordinate B.

2. Let us examine a system of conical shells, stiffened at the junctions by

rings (Fig. 15).

As before, we refer the middle surface of the shell to the cylindrical system

of coordinc_tes z and g. In order to obtain the differential equations of equilibrium,

taking inlo account the effect of the ring on the two neighboring momentless

shells, we separate an clement in the neighborhood of one of the rings by the

lines /3 = const, and b + dB = const, and we replace the discarded parts by forces

(Fig. 16).

The equilibrium conditions of the separated clement of the ring take the

fo r Ill

(z) = O,

E (_) = o,

(,) = 0,

X (M,)= 0,

Ni. t+_ci +t -- Ni, ,_act_l + qt_ ---- 0

aT t

-_ + Qt + r_ (S_, t+l --St. t-l) + rtq_a = 0

oQi

OfJ " Tt -[- ri (Ni, t+l$t+l -- NI, i-15i) "_- riqir = 0

aM_

,,o0 + qt = 0

(6.8)

Elilninating the forces Qi and T i from the obtained system,

Ni, _+_ cl _t-- Nt, i-xci-I + qit = 0

t [ Ot OtM i OSNi. i+t OtNi i t

OSi. i--I OSl, t--I OSqiz Oqi S

=0

(6.9)

Let us express the bending moment arising in the ring in terms of the radial

displaecment:

E1 (_wt .M,

If we neglect the deviation of the tangential strain from its original tangential

direction along the ring's line of contact with the shell, then the radial displace o

mcnt w_ can be expressed in terms of the derivative of the tangential displacement

according to the formula
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become an identity, showing that the quantities S 1 = St(t3 ), N 1 = NI(B), u 1 = ul(B),

v t = vl(el), playing the role of arbitrary functions of 13 in the integration of the

basic equations (6.3, 6.4) with p = q = 0, are the initia _ functions. The stressed

and strained state of a conical elastic shell is determined in a unique manner by

these functions and their derivatives, as we see. In

formulas (6.5), we obtain values of the stresses and

the lower parallcl of fixed radius r 2 (see Fig. 14):

particular, setting r = r z in

disflacements for points along

( ")s, = ,_), _', = '_ N,-- ! '___,I -- 7r S,'(_)
PI ,5 F|

$ "1 ffl ]

Ehvz f___lEhvl + I 1-- rl )Ehu 1'+7 I -- + (_) +
r I S r I / r I r I /

( (. .,)-t- 7 .... _| -- _r_-r' -- I[1 Sl"(_) + _ rl --fl --r, Sl (_)

(6.6)

If the slresses N2(_3), S2(B ) and the displacements u (B), v2(B), pertaining to

the lower parallel r 2 are taken as the initial functions ;_f B, then formulas for the

stresses NI(B), SI(B) and the displacements

( _t ul(/3), Vl(B ) at points along the upper

l parallel will bt obtained from formulas

[-"ig. 15.

(6.6) by intercl anging the indices, 1 by

2 and 2 by 1.

By means _f formulas (6.6) there is

established, in this way, a well-defined

mutual corresp_ ndence between the tan-

g_ntial stresses and displacements along any two parall :ls of the shell.

Setting r = r 1 + tz in formulas (6.5), and then passing to the limit as y _ 0,

we clearly obtain also, by the method of initial functicns, general formulas per-

raining to ,* cylindrical shell with radius r = const.

These formulas will have the following form:

S_ =SI, N_ = '_"1-- _ --_' S/(_
/-

_z z_)_
Ehu_ = Eht h +(z --zl) N 1 (_) -F--2-- Sj' (_

(.. ,,)'- ,_)Et*vs = l'2/a, l (z--rZ_) Ehul , + _ -_ .y/ +

(z -- zO' ,_;t"

(6.7)



H

55

equation of continuity of the _rain in the following form:

ct+lu't-t -- ctu'i+l + v_ sin ?t=0

Further, using the fourth of the general formulas (6.6) from the

initial functions, we express the longitudinal displacements in terms

tangential displacements and the normal forces, and .,ubstitute into

(6.14)

method of

of the

6,14):

C141 $t rit_i_l -- (' ct4 t st ri--t el_st__+1ri_..+1_q-- r_-I q--q-1 q--q+t )v_ + v_ sinai --

ri_ , r,q_, In "-_-l/
ctSt4 1 ri/2 ri--I ct41 ri rl _ gt--l, i

q_rt+l i,-,1 _- 4(q-q_p i_ T 2 q-q__

',q_l (3q q_, q' In q ) N't' '-'(q - 'i ,) "i _T 2 q - r__, _ _ +

ciri (_i rill ri2 ,n ci _/_'i.,,l
-_ (r i -- el±l) si'+l 2 ri-- ri+ 1 rill/ /,.'hi+ 1

rt'4-lCt .(_ r'_-I ",'(+l In "t _lvt+,.t -t-
-- (rl--_.t+l)at "_- 9 Pi--rl+l Pi+l] Ehi+l --

(1 + v) (rI + rl_t) el+ l s t I+ (rI__ ,t_l I eh I (r_--lNl--l. _ -- r_Nt, t-i) d_ --
8

__ (l+v) (r_ + rt+l) q st+ 1 I (rt+lNi+L i -- r,Ni, t+l) d_l = 0
(q -- q+t) Eht+_

B
(6.15)

lu order to solve zhc equations obtained, we introduce into the Investigation,

functions Ni, defined by the formulas:

Ni__lt _¢'i t

Nt-i,i : ct-i--, gt, t+l = Cl--
rt_ t r i

V '"Vt' 1 _ t+l 1
NI, t-, =- ci+, _ + =qi,' Nt+t, _= ci_,-:--- A- -- qt+l,q+l Ci+l

Th,n, dcuotiu, the coefficients of thc unknown functions

aii= -- Sill _i, hi, i-i -- si Ct-lri--I

r i -- ri_ 1

bi, i _--_ st Clair1-! $t ; I ¢t ri4-1 _ hi. i _ 1 _ "¢i+1 ct+lri÷l

ri -- rt 1 ri ri't-I ri -- ri_ 1

ri--I Ct+l ( ri -_ ri-ISt, i--I : (r i .__ ri__l) [i_5,hi 2

__ __ rirt I hi r--t _

ri -- ri- I %/

c,q+, (r, q qq+llnr11+l)'qi. 41 = -(r__ri+l)_._-Tt,l_ii_ 1 "5_--3L- .'7 I ri--rt+l

st, t = (r t ri 1) siEht\ 2 2 r i ri41

('i _- 1_ (3r i ri-- I ri2 r i )-It, -"i _) s_h_,,\ _ 2 q-q In 77--_"
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(l+v) (q + q 4) q+t q-_ si

ti,_-l= (q--q 1) Eht

(1 +_) (ri + ri__ I) Ci+la .. {|+v) (ri + ri+ 1) _'i_ ,_i+l
ti, i _--

{r_ : r i -It Ehi _t + (q ri+-l) /='_'i+1

(1 + v) (r i + q+l) q %+z sl+t

?i, i+l= -- (r i --r__ l) Ehi+ |

riri Isi ri41_3i+l q: i.rl+ri(q:i +q,i')
c i (r_.- r_ ;) riq:( + (r i rt÷l) q+t ' ':

ri ci+l (3ri q-I qz ht ri_l]Ehi .Qi -- (ri - ri I ) ('i Si \ 2 _ r i -- ri_ 1

ri'l ci ( ri ri "iri +1 I[} rt _qz, i4-1 __:" (ri- ri+ I ) cif I sit i ____ -')41 ri -- ri+l rif/Eht41

{[ + v)(ri + ri-ll CiZl siri _f q-i (i +v)(ri+ri+l) ci ;'i+l___ri+l_ qz,i.id_ "q--q , q _d_-- q--r,+, q+, _rh,+,-_

we obtain a S.vstelN of two equalions of the following form for each junction of

the shells:

i+l
El i art I

.,_(_+t) .,'+o,,N,'+ y, _,.N++e,:O
h_l--I

t+l t+l t+l

-...." - E b._ + y S_,N; + 2; ,.,N. + O.=0
t_t--I Jt_t--I &_i-- l

((;. 1(;)

If the shell has a struct.re which is inextcnsible in its t_ngent plane, then

the quantilics Qi' Sin' and tin rcducc to zero, and equa ions (6.16) arc simplified:

t-it i +l

,e",,_d_'ld'+ ,)' _,,-+ _,,n,=+ y, b,_N_'+ e, = O. -- ,,,+,=-- _ b,_, = 0
_i- I k =i- 1

((;.1_)

[11 [by: absence of stiffening ribs at the joints of th.: shells, tile system of

Fig. 18.

equations (6.171 breaks up into two indc=

pendent systcIll: :

ai,Ni" + ___ bihNh' + Pi=O

i*l

aiit't" -- _ bthvh -_- 0

h_i--I

Equations 6.18) and (6.19) have a

similar structure, which is a consequence

of the static-geometric analogy.

_;.18)

(_.19)
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By way of an example, let us examine two conical shells (Fig. 18), not

having a reinforcing ring at the junction, and constrained at the ends by inexten-

sible "shear diaphragms':

rt = ra, 72 ='in, El 2 = O, Nl = Ns = O, vL= v_ = 0

a_2 = -- sin ?_, b_ a _ sin y=co$ ysrt dr_ sin yscos y_rs rl sin _a
rI -- r] P2 -- r$ r= -- r]

St:brtituting the coefficients obtained into equations (6.18, 6.19), we obtain

two identical equations for the static function N 2 and the geometric function v 2

respeelively, which appears as a consequence of the static-geonlctric analog},,:

(N2')" sin 72 -- ,.r--_l_l(N()isin ?t = 0,

or cancelling sit] '¢z, we obtain

'_ (N2') : O,(N()" -- ,__ ,,

,, . r

Vt 8tntPl--r '_t rtv2sitt_t =0

,, r!
Va t', 0 ( 6.2 0

r= -- r t

with r 2 > rl, the integral of either of equations (6.20) has the form:

v 2 = C l sin n_

where n is determined by the relation

n °. I
rt = 0 or r 2 --

II 2 _- r2 -- r 1 -- no rt

The radius ratios for which n takes on integral values will correspond to

different shapes of geometric variability of the shell.

Thus, with r z = 3rt/4, n : 2, and the shape of the geometric variability is

characterized by bending deforrnations of the shells along their line of contact,

following the law v z = C t sin 213, whore C 1 is an arbitrary constant.

LITERATURE CITED

[1] V.Z. Vlasov, "Design of shells of revolution with a non-symntetrical

load," Prockt i Standart, Nos. 3 and 4, (193'/).

[2] V.Z. Vlasov, "Design of shells described by surfaces of second order."

Sb. TS N I I P S, Plates and Shells, State Construction Press, (1939).

[3] A.L. Gol'denveizer, A.K. Mroshchinskii and G.V. Repman, "Methods of

design of spherical domes according to the molnentless theory." Sb, TS N I I P S

Plates and Shells, (1939.

[4] V.V. Sokoluvskii, "Equations of equilibrium of momentless shells."

Prikladnaia Matematika i Mekhanika VII, No. 1, (1943).

[5] Iu. N. Rabotnov, "Certain solutions in the momentless theory of shells."

Prikladnaia Mat2matika i Mekhanika X, Nos. 5-6, (1949).



9@

[6] V.Z. Vlasov, "Momentless theory of thin shells, described by surfaces of

revolution." Prikladnaia Matematika i Mekhanika XI, No. 4, (1947).

[7] V.V. Novoshilov, Theory of Thin Shells. Gostenkh:zdat, (1947).

[8] V.Z. Vlasov, General Theory of Shells. Gostekhizcat, (1949).

[9] A.L. GoI'denvcizer, Thin Elastic Shells. Gostekhizdat, (1952).

Translated under NASA contract by

Con:_u!tants Custom Translations_ Inc.

[{<,w Y<grk, New York

NASA - Langley Field, Va.


